Logic, Probability and Learning, or an Introduction to Statistical Relational Learning

نویسنده

  • Luc De Raedt
چکیده

Probabilistic inductive logic programming (PILP), sometimes also called statistical relational learning, addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with first order logic representations and machine learning. A rich variety of different formalisms and learning techniques have been developed and they are being applied on applications in network analysis, robotics, bio-informatics, intelligent agents, etc. This tutorial starts with an introduction to probabilistic representations and machine learning, and then continues with an overview of the state-of-the-art in statistical relational learning. We start from classical settings for logic learning (or inductive logic programming) namely learning from entailment, learning from interpretations, and learning from proofs, and show how they can be extended with probabilistic methods. While doing so, we review state-of-the-art statistical relational learning approaches and show how they fit the discussed learning settings for probabilistic inductive logic programming. This tutorial is based on joint work with Dr. Kristian Kersting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relational Data Learning

The past decade has witnessed many new theories and applications for statistical machine learning. However, most of statistical machine learning techniques are developed for a predetermined situation; it is static and inflexible, has flat structure and only deals with attributes (random variables) without any concept of objects. To some extent, these limitations make it hard to apply these stat...

متن کامل

Inductive Logic Programming meets Relational Databases: An Application to Statistical Relational Learning

With the increasing amount of relational data, scalable approaches to faithfully model this data have become increasingly important. Statistical Relational Learning (SRL) approaches have been developed to learn in presence of noisy relational data by combining probability theory with first order logic. However most learning approaches for these models do not scale well to large datasets. While ...

متن کامل

Inductive Logic Boosting

Recent years have seen a surge of interest in Probabilistic Logic Programming (PLP) and Statistical Relational Learning (SRL) models that combine logic with probabilities. Structure learning of these systems is an intersection area of Inductive Logic Programming (ILP) and statistical learning (SL). However, ILP cannot deal with probabilities, SL cannot model relational hypothesis. The biggest c...

متن کامل

Probabilistic Cognition for Technical Systems: Statistical Relational Models for High-Level Knowledge Representation, Learning and Reasoning

For the realisation of cognitive capabilities in technical systems such as autonomous robots, the integration of many distinct cognitive resources that support learning and reasoning mechanisms can help to overcome the many challenges posed by the real world. Since many real-world problems involve uncertainty, this work explores the potential of statistical relational models as a resource for p...

متن کامل

Inductive Logic Programming Meets Relational Databases: Efficient Learning of Markov Logic Networks

Statistical Relational Learning (SRL) approaches have been developed to learn in presence of noisy relational data by combining probability theory with first order logic. While powerful, most learning approaches for these models do not scale well to large datasets. While advances have been made on using relational databases with SRL models [14], they have not been extended to handle the complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008